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r the current ability estimate. The study was conducted over the winter
semester and summer session of 1980 using as subjects volunteers from a
undergraduate introductory course in measurement and a graduate/undergradu-
ate course in group intelligence testing. Analyses for the two procedures
included a determination of the optimal test length, a comparison of the
test-retest reliability, a comparison of the total test information, a
comparison of the obtained ability estimates, a comparison of the goodness
of fit of the 3PL model to the test data, and the compiling of descriptive
statistics including average testing time and average test difficulty.
Results of the analyses indicated that the optimal test length of the
Bayesian procedure was 14 items, while the optimal test length of the
maximum likelihood procedure was 12 items., No difference was found between
the procedures in terms of the reliability of the ability estimates .<e
Bayesian procedure yielded greater mean total test information than t e-
maximum likelihood, but this was found to be due to the regression of the
Bayesian ability estimates to the mean of the assumed prior distribution,
where more information was available. In the range of ability where there
were ability estimates for both procedures there was no difference in total
test information. Further analyses showed that the assumption of different
priors can significantly alter the ability estimates obtained from the
Bayesian tailored test, as well as the total test information yielded by
the test and the optimal length of the test. The goodness of fit compari-
son indicated that the Bayesian procedure yielded significantly poorer fit
of the 3PL model to the data than did the maximum likelihood procedure.
Based on the results of these analyses it was concluded that for large
scale tailored testing a maximum likelihood tailored testing procedure
with item selection based on information is the procedure of choice.
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A Comparison of a Bayesian and a Maximum

Likelihood Tailored Testing Procedure

It is possible that in the near future there will be a widespread
usage of tailored testing as an alternative to paper-and-pencil tests.
For example, the Armed Services plan to implement tailored testing pro-
cedures in the near future. The possibility of large-scale implementa-
tion of tailored testing has increased the need to identify the optimal
tailored testing procedures among the many that are available.

When selecting a tailored testing procedure a decision must be made
as to which of numerous available techniques should be used for the com-
ponent parts of the tailored testing procedure. For instance, one re-
quirement for tailored testing is the calibration of items. For the
calibration of items a number of models are available (e.g., one-, two-,
and three-parameter logistic models), and for each model there may be
a number of calibration programs available (e.g., the ANCILLES, LOGIST,
and OGIVIA procedures for the three-parameter logistic model). Two
other important components of tailored testing are the item selection
procedure and the ability estimation procedure. While there are several
ability estimation procedures available, the most common procedures are
Owen's Bayesian and maximum likelihood estimation procedures. For
selecting items the two most frequently used procedures are either to
select items to maximize information at a given ability level or to
select items to minimize the posterior variance of the ability estimates.
Wnile a number of studies have been done comparing various procedures
available for a number of components, little has been done to directly
compare tailored testing procedures employing these different ability
estimation and item selection procedures. The purpose of the current
study, then, is to compare in a live testing setting tailored testing
procedures based on maximum likelihood ability estimation and maximum
information item selection, and on Owen's Bayesian ability estimation
(Owen, 1975) and minimum posterior variance item selection. Before pro-
ceeding with a presentation of the current study, however, previous
studies investigating different procedures for tailored testing will be
discussed.

Comparison of Latent Trait Models

Several studies have been done to compare the use of different models
for tailored testing. One such study, a direct comparison of the 1PL
and 3PL models in a live tailored testing setting, was reported by Koch
and Reckase (1978). The purpose of this study was to compare the 1PL
and 3PL models in a tailored testing application to vocabulary ability
measurement. Both procedures used maximum likelihood techniques for
item and ability parameter estimation. In both procedures items were
selected to maximize the information function at the current ability
estimate. The results of this study indicated that both models could be
successfully applied to vocabulary ability measurement. The reliabilities
reported (a combination of test-retest and equivalent forms reliabilities)
indicated that the 3PL procedure yielded a slightly higher reliability
than the 1PL procedure (r-.77 for the 3PL procedure and r-.61 for the
1PL procedure). One important finding of this study was that, if care-
ful attention is not paid to the operational characteristics of the pro-
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cedures, nonconvergence of the maximum likelihood ability estimation
procedure can be a serious problem. In this study the 3PL procedure
failed to converge to ability estimates in nearly one-third of the
cases. Nonconvergence was not a serious problem with the 1PL proce-
dure.

In a second study, reported by Koch and Reckase (1979), in which
the IPL and 3PL models were applied to a multidimensional achievement
test, nonconvergence of the 3PL maximum likelihood ability estimation
procedure was encountered in about eight percent of the cases. The
substantial reduction in nonconvergence cases over the previous study
was attrituted to use of an item pool of more appropriate difficulty.
Despite the reduction of the number of cases of nonconvergence in this
study, the results still indicated a number of problem areas. Relia-
bilities were quite low for both procedures, as was the information
yielded by both procedures. A number of possible explanations were
suggested for the inadequate performance of the procedures. Among
these were unstable item parameter estimates due to small sample sizes,
instability due to poor linking procedures, and poor selection of
entry points into the item pool. These problems appeared to have
equally serious effects on both the 1PL and 3PL procedures.

A study reported by McKinley and Reckase (1980a) attempted to
correct the problems encountered in the Koch and Reckase studies.
Close attention was paid to appropriate item parameter linking and
entry points for the IPL and 3PL procedures. The results of this
study indicated that both models could be quite successfully applied
to tailored testing if correctly implemented. Both 1PL and 3PL
reliabilities were higher than the reliability of a classroom test
over the same material. A comparison of the 1PL and 3PL procedures
indicated that the 3PL procedures yielded more information than the
1PL procedure or the classroom test. The 3PL procedure also fit the
data better than the 1PL model. This study concluded that for tailored
testing applications the 3PL model was the model of choice.

A similar conclusion was reached by Urry (1970, 1977b). Through
a series of simulation studies, Urry found that tailored testing be-
comes less effective when a model with insufficient parameters is used.
He concluded that construct validity decreases as a function of the
degree of degeneracy of the model, and the 1PL model was particularly
inappropriate for use with multiple-choice items because it did not
portray multiple-choice response data with fidelity (Urry, 1977b).

Comparisons of Ability Estimation Procedures

It would appear to be clearly established in the literature that
for tailored testing applications the 3PL model is more appropriate
than the 1PL model. However, very little appears in the literature
concerning the optimal procedures for ability estimation and item selec-
tion to be used in the 3PL tailored testing procedure.

A _ _ _ _ _ _ _ _ _ _ _ _
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One study that did compare different ability estimation procedures
was conducted by Maurelli (1978). In this study a comparison was made
of maximum likelihood and Bayesian ability estimation procedures in a
simulated stradaptive testing application. The Bayesian ability esti-
mation procedure was a modification of the procedure proposed by Owen
(1975), and the maximum likelihood estimation procedure was similar
to the one proposed by Lord (1975). Modifications included altering
item selection procedures to make them compatible with the branching
scheme of the stradaptive model. The variables investigated included
the ability estimation procedures, test lengths (15, 30, and 45 items),
and the use or non-use of prior information to determine entry level
(variable entry point). The conclusions reached in this study included
the finding that the maximum likelihood procedure performed best over-
all when quality of performance was measured in terms of bias (mean
error of estimate), linearity of the regression of 6 on 6, average
information, and fidelity (correlation of 6 with e). The Bayesian pro-
cedure showed acceptable performance only at the longest test length
when using prior information to determine the entry point. This proce-
dure was found to be most deficient in the lower third of the ability
scale. Maurelli also concluded that assuming a normal prior assures
a regression of the estimates towards the mean of that prior. Unfortu-
nately, since this study was conducted using the classic stradaptive
item selection procedure for both ability estimation procedures, no
comparison of item selection procedures was made.

From a review of the literature it is apparent that there is little
evidence for determining whether maximum likelihood or Bayesian esti-
mation is better, in general, for any application. Virtually no attempt
has been made to directly compare the two procedures in a live tailored
testing application. Nor has there been any comparison of the two most
common item selection procedures used with these estimation procedures.
The purpose of the present study, then, is to comparein a live tailored
testing applicatlon,.maximum likelihood ability estimation and maximum
information item selection with minimum posterior variance item selec-
tion and BayeSian ability estimation.

Method

Item Pool

Both the Bayesian and the maximum likelihood tailored tests used
the same pool of 137 items. Items used for this study were selected
from the first and third subtests of the School and College Ability
Tests (SCAT), forms 2A and 3A. Estimates of the 3PL item parameters
were obtained from the Educational Testing Service (ETS). The distri-
butions of the item parameter estimates are shown in Figures I-A,
1-B, and 1-C, and a summary of the descriptive statistics for these dis-
tributions is presented in Table 1. As can be seen in Figure I-A the
item discriminations (a-values) were fairly evenly distributed, with
most of the items having a-values greater than .75. The item diffi-
culties (b-values), shown-in Figure 1-B, were approximately normally
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distributed between -2.0 and +2.0, with a slight tail at the negative
end. The item guessing values (c-values) were very tightly clustered
around the mean of .14. In terms of these item parameter estimates the
item pool was of high quality. It came very close to satisfying the
requirements for tailored testing item pools set out by Urry (19

77a).

Table 1

Summary of Descriptive Statistics of Item

Parameter Estimates for Tailored Testing Item Pool

Statistic ai  bi  ci

Mean 1.12 -.05 .14
Median 1.04 .06 .14
St. Dev. .46 1.17 .05
Skewness .27 -.22 1.61
Kurtosis -.90 2.14 6.15
Minimum .14 -4.25 .06
Maximum 1.94 4.56 .39

Note: The item pool contained 137 items.

Figure 2 shows the total information curve for the item pool. As
can be seen in the figure the curve is slightly negatively skewed. The
curve is very high near the center of the ability estimate range and
drops off rather sharply toward the extremes of the ability estimate
range. Information was high between -1.5 and +2.5, but outside the range
not much information was available.

___________________________-:c- &
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Tailored Testing Procedures

In general, tailored testing procedures have three main components:
an item selection routine, an ability estimation procedure, and a stop-
ping rule. In this study two combinations of item selection and ability
estimation procedures were used. For one group of subjects, items that
had the most item information (Birnbaum, 1968) at the most recent ability
estimate were selected and a maximum likelihood estimation procedure
using all previous responses was used for ability estimates. For the
rest of the subjects items were selected to minimize the posterior vari-
ance of the ability estimate distribution and Owen's Bayesian ability
estimation procedure was used for ability estimates. These procedures
will be described in greater detail shortly.

Before testing began no ability estimates were available for the sub-
jects, so initial estimates were assigned to determine the starting points
in the item pool. For both procedures the initial ability estimates were
randomly assigned to each subject to be either +.150 or -.100. These
values represent difficulty values near the center of the item pool dif-
ficulty distribution with one starting point on either side of the median.
For the second session subjects were assigned the alternative initial
ability estimate in order to provide different initial items from one ses-
sion to the next. Both procedures used the same stopping rule. The
tailored tests continued until 20 items had been administered.

Ability Estimation and Item Selection Procedures

For the maximum likelihood tailored tests, items were selected for
administration that yielded the maximum item information at the most re-
cent ability estimate. For the 3PL model the formula for item informa-
tion is given by

li( = D2a .2 [DLi(e.)I - D2aiPi(e )p[DLi(Oj) - log cil (1)

where 1 (6j ) is the value of the item information at Ability ej, Li(e j) =

aie(j-bi), Pi(e ) is the probability of a correct response to Item i given

Ability ei, and p(x) is the logistic probability density function. Total

test information is the sum of the item information values:

n

I(e ii (e 2)

Formula 1 was used in the tailored testing procedure to compute the infor-
mation for each item in the item pool at the examinee's current ability
estimate. The item with the greatest information at the ability estimate
was then administered to the examinee. The first item was selected to
maximize information at the initial, randomly assigned ability estimate.
If that item were correctly answered the ability estimate was increased
by a fixed stepsize of .4, and if it were incorrectly answered the ability
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estimate was decreased by the fixed stepsize. The .4 stepsize was selec-
ted on the basis of previous research as giving the best combination of
minimum error and least statistical bias (Patience and Reckase, 1980).
This fixed stepsize procedure was used until a maximum likelihood ability
estimate, the mode of the likelihood distribution, could be obtained
(i.e., when both correct and incorrect responses were obtained). Each
new item was then selected to maximize the information at the new ability
estimate, with the restriction that no item could be used more than once.

For the Bayesian tailored tests items were selected to minimize the
posterior variance of the ability estimate distribution. Owen's proce-
dure assumes a normal distribution of ability as a prior. In this study
the mean of that prior distribution was set equal to the initial, randomly
assigned ability estimate, and the standard deviation of the prior was
set equal to one. The first item was then selected so as to result in
the greatest possible reduction in the standard error of estimate (urry,
1977a). This was accomplished in the following manner. Rather than
computing the actual value of the standard error of estimate, a stati-
stic labelled a by Jensema (1974),was used for efficiency of computation.
The expected standard error is a function of a. The value at was calcu-
lated for each item in the item pool according to the formula.

Wi(2-u i) exp (2D 2 ) (3)

2(1-ci)t i

where ci is the item guessing value and the following relationships hold:

bi - 0.
Di [2(ai- 2 + c )1 (4)

Di

erf Di = AFf exp(-x 2)dx, (5)0

ui = -erf Di , (6)

Wi = ci + ( u(7)

2
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ard

a.a o.a

t a i (8)
1+ a Ili2

In the above equations ai is the discrimination of Item i, bi is the dif-

ficulty of Item i, 6 i is the jth ability estimate, and ai2 is the variance
of the j ability ehtimates.

The item with the smallest u. value was administered to the examinee.
Then new estimates of 6 and a2 wee made based on the examinee's response.
If the response were correct, new estimates of ability and variance were
computed as

s i (1-c i )Oj+ 1 = j+ "(9)

4TWiexp(Di2)

and
a2 l -j2,, ti(1-ci)iWi-c.- iWi u ri-Iexpdi2 

-l

°2j+ = j2£I - - _-(10)
W j2ulexp(2Di 2

where

a.
2

Si = (11)

(a- 2 +

and the other parameters are as pre-io-usly defined. If an incorrect

response were madethe new ability and variance estimates were computed
as

St/"T

ej+ j - exp(D12)(12)

and

j1 2  OJ21 2ti[1 + O DiViexp(D1 2)] (13)J+1 z1 _1

7r (Viexp(D 1  2 2

IL.
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where

Vi = 1 + erf D. (14)

Once new estimates of ability and variance were calculated new a. values
were computed for all unused items in the item pool. The above 1equence
was then repeated. For further discussion of the mechanics of this pro-
cedure see Owen (1975), Urry (1971), Jensema (1972) or Jensema (1974).
One further point about this procedure that should be noted is that the
prior assumption of normality is maintained throughout the procedure.
That is, the distribution of ability is not recomputed after each item.
Rather, it is assumed to remain normal with a mean equal to the current
ability estimate and variance equal to the current estimate of variance.

Design

This study employed a test-retest design, with two sessions one
week apart. Subjects were randomly assigned to take either a maximum
likelihood or a Bayesian tailored test, and subjects were randomly
assigned an initial ability estimate of -.100 or +.150 for the first
session. For the second session subjects were assigned to the alter-
native initial ability estimate from the one assigned the first session.
Subjects received the same type of test, Bayesian or maximum likelihood,
for both sessions in order to make test-retest reliability comparisons
possible. The tailored tests were administered on Applied Digital Data
Systems (ADDS) Consul 980 cathode ray tube terminals connected to an
Amdahl 470/V7 via Time Sharing Option facilities.

Sample

This study was conducted over the winter semester and summer session
of 1980. For the rest of this paper both will be referred to as semesters.
The winter semester study was conducted using 34 volunteers from an intro-
ductory course in measurement. Of these 34 volunteers, 31 were female
and three were male, 33 were seniors and one was a graduate student. The
second semester subjects included volunteers from two courses, the intro-
ductory course in measurement mentioned above, and a graduate/undergradu-
ate course in group intelligence testing. There were 36 volunteers, of
whom 14 were in the introductory course in measurement. The remaining
22 were from the group intelligence testing course. There were 25 fe-
males in this second semester group, and 11 males. There were 14 gradu-
ate students, 15 seniors, six juniors, and one sophomore.

Analyses

Before any of the planned analyses were performed, preliminary analyses
were performed to determine whether data from the two semesters should be
combined. These analyses included the plotting and visual comparison of
the ability estimate distributions obtained for the two semesters and a
comparison of the ability estimate means from the two semesters'using
analysis of variance (ANOVA) procedures. Because the second semester
study included students enrolled in graduate school, and because it occurred



during a summer semester, there was some reason to suspect the two groups
were not comparable and should not be combined.

Figures 3 and 4 show the ability estimate distributions for the
Bayesian tailored tests for the winter and summer semesters, respectively.
Figures 5 and 6 show the maximum likelihood tailored test ability esti-
mate distributions for the winter and summer semesters, respectively.
A visual comparison of these plots indicated that the ability estimates
from the summer semester tended to be higher than the winter semester
ability estimates for both the Bayesian and the maximum likelihood tail-
ored tests. This indicated that the subjects in the summer semester may
have had higher vocabulary ability than the winter semester subjects,
since both groups took tests using the same item pool. The means of
these distributions are shown in Table 2.

FIGURE 3
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FIGURE 4
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FIGURE 6
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Table 2

Mean Ability Estimates for Bayesian and Maximum

Likelihood Tailored Tests for Winter and Summer

Spring Summer
Test . .

Session I Session 2 Session 1 Session 2

Bayesian .75 .86 1.1I6 1.27

Maximum 1.25 1.30 1.53 1.56
Likelithood

.
l.7A
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In an attempt to confirm that there was a real difference between
the groups a three-way analysis of variance with repeated measures on
one factor was performed. The independent variables were test (Bayesian
or maximum likelihood), semester (winter or summer), and session. The
repeated measures were over the sessions. In order to facilitate the
interpretation of the results of this analysis the Bayesian and maximum
likelihood ability estimates were put on the same scale by converting
them to Z-scores. The Z-scores were computed for each procedure using
the withTn procedure means and standard deviations. This put both sets
of ability estimates on the same scale, thus eliminating any differences
due to different scales. This was done because at this stage the dif-
ferences in the procedures were not an issue. The ANOVA was then run
using the Z-scores as the dependent variable. The results of the ANOVA
are shown Tn Table 3.

Table 3

Analysis of Variance Table

for Preliminary Comparison of Winter

and Summer Ability Estimate Distributions

Source SS df MS F

Test 35.96 1 35.96 0.20 .655

Semester 1406.51 1 1406.51 7.89 .006

Test x semester 35.96 1 35.96 0.20 .655

Error 11942.65 67 178.25

Session 50.87 1 50.87 6.63 .012

Test x Session 9.67 1 9.67 1.26 .265

Semester x Session 2.03 1 2.03 0.26 .608

Test x Semester x Session 0.10 1 0.10 0.01 .910

Error 513.97 67 7.67
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Because Z-scores were used the presence of different scales for
the two test procedures did not result in a problem in interpretation.
Also, because the means for the two tests were set to 50 the test main
effect was eliminated. The semester main effect, however, was signifi-
cant (F=7.89, p<.01), indicating that the examinees in the summer study
had significantly higher vocabulary ability estimates. Because of this
the decision was made not to combine the two groups, but rather to treat
semester as an independent variable with two levels.

Once the determination was made that the data from the two semesters
should not be combined, a number of analyses were performed separately
on the two sets of data. The first analysis was the determination of op-
timal test lengths for the two procedures. This analysis was performed
since the administration of inappropriate items may induce ability esti-
mate bias. It is important to not allow the tailored tests to continue
beyond the optimal length. As the items appropriate for an ability are
used up, bias can be introduced into the ability estimates if the test
is continued, since the procedure may begin to administer less appropriate
items (Reckase, 1974). Therefore, it is important that the tailored tests
do not continue beyond the optimal length. The test length analysis was
accomplished by plotting the convergence of the procedures to ability
estimates for each tailored test. That is, for a given tailored test the
ability estimate obtained after each item was plotted against the item
number. Then a second plot was done as an overlay on the same set of
axes. For the maximum likelihood tests the overlay was the plot of the
item information that was obtained for each item at the previous ability
estimate against the item number. For the Bayesian tests the overlay was
the plot of the standard error of estimate obtained after each item against
the item number. The purpose of these plots was to graphically represent
the interrelationships of test length, ability estimate, and item informa-
tion or standard error of estimate, so that a determination could be made
as to what test length and item information or standard error of esti-
mate would be optimal as cutoff values for terminating the tailored tests.

Other analyses performed included comparisons of the Bayesian and
maximum likelihood test-retest reliabilities, the total test information
yielded by the two procedures, and the ability estimates yielded by the
two procedures. All of these comparisons were made using the 20 item
level as well as at the various test lengths determined by the optimal
cutoff analyses. All correlations used in the reliability analyses were
computed using both ability estimates and estimated true scores (Lord,
1979). The computation of the estimated true scores was accomplished
by summing the probabilities of correct responses at the examinee's final
ability estimate for all the items In the item pool. The formula for
estimated true scores is as follows:

n
t(oe) =E PI(e), (15)

where t(eB) is the estimated true score for Examinee j.
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The reliabilities computed for this study were not strictly test-
retest reliabilities, but rather a mixture of test-retest and equivalent
forms reliabilities, since the tests in one session were not identical
to tests taken in the other session. The hypothesis that all of the
reliabilities were estimates of the same reliability was tested using
a chi-square test given in Snedecor and Cochran (1980).

The total test information analyses were done to compare the amount
of information yielded at the final ability estimate by the two proce-
dures. Total test information was computed using Equations 1 and 2,
where the summation in Equation 2 is over the items of each tailored test.
Total test informations were compared using both plots and analysis of
variance procedures.

Comparisons of the ability estimates included a number of analyses.
One analysis was the comparison of the distributions of ability estimates
yielded by the two procedures using plots of the distributions. Also,
analysis of variance procedures were used to compare the mean ability
estimates. Another comparison involved the use of the Bayesian and maxi-
mum likelihood ability estimation procedures with the item selection pro-
cedures switched. That is, Bayesian ability estimates were obtained
for the items selected by the maximum likelihood tailored test procedure,
and maximum likelihood ability estimates were obtained for the items
selected by the Bayesian tailored test procedure. The purpose of this
analysis was to determine whether the differences found between the two
procedures were due solely to the ability estimation procedures, or whether
the item selection procedures also had an effect.

Another set of analyses performed was the comparison of the items
that were administered by the tailored tests. Included in these analyses
were a comparison of the items administered by the two procedures and
a comparison for each procedure of the items administered for the two
sessions.

The goodness of fit of the 3PL model to the test data for the two
procedures were also compared. The goodness of fit statistic
used in this study was the mean square deviation (MSD), calculated by
summing over examinees the squared differences between the actual re-
sponses to the items and the expected responses to the items (probability
of a correct response) as predicted by the model (Reckase, 1977). The
formula for the MSD statistic is

n (ulj " PI(- ) W
MSD. = E (16)

i~j nj

where MSD is the mean squared deviation for Examinee J, uij is the actual

response to Item i by Examinee J, Pi(6j)is the probability of a correct
response to Item i by Examinee j determined from the model using the final
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ability estimate and the item parameter estimates, and n. is the number
of items in the tailored test for Examinee J. The goodniss of fit
of the two procedures was compared using the MSD statistic as the depen-
dent variable in a dependent t-test.

Other analyses run on the data included two correlational analyses.
One such analysis performed was the correlation of item response latency
times with the ability estimates. Correlations were obtained between
mean item response latency times and final ability estimates. Also the
mean item response latency times for correct responses and incorrect res-
ponses were compared using an analysis of variance procedure.

A final set of analyses performed was the compilation of descriptive
statistics for the two procedures for both sessions. Descriptive stati-
stics included average testing time and average test difficulty.

Results

Optimal Cutoffs

Figure 7 shows typical convergence plots that were obtained for one
person using the winter data for the maximum likelihood tailored tests
and Figure 8 shows typical convergence plots obtained for one person using
the winter data for the Bayesian tailored tests. The values of the ability
estimates and the item information estimates at the estimated ability
that were plotted in Figure 8 are shown in Table 5. These figures and
tables and others like these were examined in order to determine the min-
mum test length at which the ability estimates obtained from the two pro-
cedures appeared to be stable. In the plots of the ability estimates ob-
tained from the maximum likelihood tailored test procedure the curve ap-
peared to flatten out at about 12 items, indicating that 12 items was a
sufficient length for the tailored tests. For the Bayesian procedure
the curves flattened out around the 14 item level. In terms of item infor-
mation the 12 item cutoff for the maximum likelihood procedure would
represent an information cutoff of approximately 1.64. That is, the
average item information for Item 12, using the 12 item ability estimates,
was 1.64 (n=18). The Bayesian cutoff of 14 items would represent a stan-
dard error of estimate cutoff of .25, which was the average standard
error of estimate of the 14 item level (n=16).



FIGURE 7

ABILITY ESTIMATES AND INFOMATION VALUES AFTER EACH

ITEM IN A MAXIMUM LIKELIHOOD TAILORED TEST FOR THE

WINTER SEMESTER
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FIGURE 8

ABILITY ESTIMATES AND STD ERRORS OF ESTIMATE AFTER

EACH ITEM IN A BAYESIAN TAILORED TEST FOR THE WINTER

SEMESTER
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Table 4

Ability Estimates and Item Information for

Both Sessions of a Maximum Likelihood Tailored Test

for the Winter Semester

Session I Session 2
Item .

Ability Estimate Information Ability Estimate Information

0 -. 100 2.721 .150 2.850

I .300 2.884 .550 2.994

2 .700 2.952 .950 3.003

3 .487 2.943 .701 2.952

4 .654 2.752 .847 2.705

5 .548 2.607 .964 2.584

6 0 .654 2.413 .817 2.637

7 .692 2.371 .855 2.259

8 .768 2.361 .708 2.363

9 .690 2.301 .786 2.224

10 .614 2.288 .639 2.276

II .621 2.225 .677 2.088

42 .699 2.055 .571 1.969

13 .553 1.966 .619 1.880

14 .560 1.964 .626 1.838

15 .598 1.851 .664 1.814

16 .635 1.846 .712 1.887

17 .673 1.793 .664 1.795

Is .721 1.911 .712 1.796

19 .759 1.826 .760 1.657

A
_ _ __
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Table 5

Ability Estimates and Standard Errors of Estimate

for Both Sessions of a Bayesian Tailored Test

for the Winter Semester

Session 1 Session 2

Item
Ability Standard Error Ability Standard Error
.Estimate of Estimate Estimate of Estimate

0 -.100 1.000 .150 1.000

I .579 .818 .872 .790

2 1.043 .660 1.216 .650

3 .551 .502 .660 .485

4 .760 .440 .827 .435

5 .884 .401 .964 .399

6 .995 .371 1.113 .371

7 1.124 .348 1.270 .348

8 1.264 .327 1.155 .316

9 1.161 .300 1.019 .292

10 1.037 .279 1.065 .281

II 1.078 .268 1.119 .272

12 1.126 .261 1.173 .263

13 1.177 .253 1.214 .257

14 1.214 .247 1.146 .243

15 1.275 .243 1.168 .239

16 1.176 .232 1.082 .228

17 1.101 .223 1.102 .224

18 1.121 .219 1.037 .217

19 1.138 .217 1.057 .212

20 1.165 .212 1.086 .209

ii77 i =-=. .
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FIGURE 9
ABILITY ESTIMATES AND INFORMATION VALUES AFTER EACH

ITEM IN A MAXIMUM LIKELIHOOD TAILORED TEST FOR THE

SUMMER SEMESTER
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FIGURE 10

ABILITY ESTIMATES AND STD ERRORS OF ESTIMATE AFTER EACH

ITEM IN A BAYESIAN TAILORED TEST FOR THE SUMMER SEMESTER
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Figure 9 shows typical convergence plots for the maximum likelihood
tailored tests for the summer semester and Figure 10 shows typical
Bayesian convergence plots for the summer semester. Table 6 shows the
ability estimates and item information estimates at the estimated ability
used for Figure 9 and Table 7 shows the ability estimates and standard
errors of estimate used in Figure 10. A visual examination of these
plots indicates that the optimal cutoffs for the summer semester data
were roughly the same as those determined for the winter data.

The mean item informations and mean standard errors of estimate at
the 12 and 14 item levels, respectively, were not significantly different
from the values obtained for the winter semester data. Because of this,
all of the analyses were performed using ability estimates based on
tailored tests that were 12 items long, 14 items long, and 20 items long,
regardless of the semester or whether the testing procedure was Bayesian
or maximum likelihood. In this way the Bayesian and maximum likelihood
tailored test procedures could be compared at their respective optimal
cutoffs and at various equal test lengths.

Table 6

Ability Estimates and Item Information for Both
Sessions of a Maximum Likelihood Tailored Test

for the Summer Semester

Session. 1 Session 2

Item
Ability Estimate Information Ability Estimate Information

0 .150 2.850 -.100 2.721
1 .550 2.994 .300 2.884
2 .950 3.003 .700 2.952
3 1.350 2.942 1.100 2.922
4 1.750 2.898 1.500 2.990
5 2.150 2.794 1.900 2.853
6 1.772 2.383 1.708 2.571
7 1.626 2.077 1.783 2.396
8 1.701 1.869 1.637 2.072
9 1.749 1.800 1.470 2.285

10 1.756 1.541 1.518 2.049
11 1.804 1.452 1.565 1.764
12 1.658 1.473 1.398 1.823
13 1.465 1.684 1.406 1.742
14 1.473 1.644 1.259 1.812
15 1.356 1.804 1.143 2.002
16 1.363 1.708 1.190 1.889 a
17 1.411 1.542 1.198 1.857
18 1.404 1.464 1.205 1.750
19 1.411 1.447 1.212 1.713

........ -----
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Table 7

Ability Estimates and Standard Errors of Estimate for

Both Sessions of a Bayesian Tailored Test

for the Sumer Semester

Session 1 Session 2

Item
Ability Estimate Standard Error Ability Estimate Standard Error

of Estimate of Estimate

0 .150 1.000 -.100 1.000
1 -.429 .741 .579 .818
2 -.036 .660 1.043 .660
3 .358 .569 .551 .502
4 .694 .491 .760 .440
5 .857 .438 .884 .401
6 .630 .375 .995 .371
7 .761 .352 .824 .332
8 .561 .316 .632 .298
9 .632 .302 .711 .286

10 .713 .290 .760 .276
11 .770 .279 .809 .268
12 .694 '263 .874 .259
13 .743 .255 .824 .247
14 .805 .249 .860 .241
15 .742 .239 .797 .232
16 .765 .232 .827 .226
17 .796 .228 .872 .221
18 .763 .221 .930 .219
19 .787 .217 .878 .212
20 .830 .212 .911 .208

Reliabilities

Table 8 shows the test-retest reliabilities that were obtained for
this study. It includes reliabilities at the 12, 14, and 20 item levels,
for both the Bayesian and maximum likelihood tailored tests, for both the
winter and summer session data. The reliabilities in Table 8 were com-
puted using both ability estimates and estimated true scores. Fisher's
r to z transformation was applied, and then a chi-square test (Snedecor
ind Cochran, 1980) was performed to determine whether all the reliabilities
were estimates of the same reliability. The obtained chi-square statis-
tic was found to be not significant. Thus, the 12 item test length was
not significantly different from the 20 item length in terms of reliability.
Moreover, based on these results it would appear that there were no sig-
nificant differences between the reliabilities of the maximum likelihood
and Bayesian procedures, regardless of test length. That is, the reliability
at a test length of 12 items was approximately the same for the Bayesian
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tailored tests as it was for the maimum likelihood tailored tests, even
though 12 items was selected as the optimal cutoff for the maximum like-
lihood tailored tests. Also, although the 12 and 14 item cutoffs were
determined using the winter semester data, the reliabilities obtained at
those test lengths for the summer data were about the same. However, it
should be remembered that these reliabilities were obtained using small
sample sizes, so a large difference was needed for significance.

Table 8

Bayesian and Maximum Likelihood Tailored Test Reliabilities

for Winter and Summer Using Ability Estimates and

Estimated True Scores

Winter Summer

Test Estimate
20 Item 14 Item 12 Item 20 Item 14 Item 12 Item

Bayesian Ability .914 .919 .866 .963 .929 .905

True Score .885 .900 .830 .946 .881 .855

Max. Like. Ability .925 .865 .943 .908 .748 .777

True Score .899 .820 .936 .921 .875 .839

Note. Sample sizes for computation of reliabilities were n=16 for the winter
semester Bayesian reliabilities, n=13 for the summer semester Bayesian
reliabilities, n=18 for the winter semester maximum likelihood reliab-
ilities, and n=23 for the summer semester maximum likelihood reliabili-
ties.

Total Test Information

The mean total test information at the ability estimates obtained for
the Bayesian and maximum likelihood tailored tests at the 12, 14, and 20
item test lengths for both the winter and summer semesters are shown in
Table 9. It was expected that the mean total test informations for both
the Bayesian and the maximum likelihood tests would be greater for the
winter semester than for the summer semester. This was expected because
it had already been determined that the ability estimates for the summer
semester were significantly higher than the ability estimates for the
winter semester. This would have resulted in items with greater b-values
being selected during the summer tests. Since fewer items were a~ailable
farther away from the center of the item pool, the total information in
that region of the pool would be lower. In addition, the fewer items
available would result in greater mismatching of ability estimates and
item difficulty, which would also lower total test information. In order
to confirm this, a three-way ANOVA was run using the 20 item mean total
test information as the dependent measure, with semester, session, and
test type (Bayesian or maximum likelihood) as independent variables. The
session variable was a repeated measure. The results of this ANOVA are
summarized in Table 10. As indicated in Table 10, an F=6.11 (L<.05) was



-27-

obtained for the semester main effect, indicating that the mean total
test informations for the winter semester were higher than the mean
total test informations for the summer. Thus,the results of the ANOVA
on the mean total test informations are consistent with the prediction
based on the finding that the ability estimates were higher for the sum-
mer than for the winter.

Table 9

Mean Total Test Information for Bayesian and

Maximum Likelihood Tailored Tests for Winter and Summer

Bayesian Maximum Likelihood
Semester Session

20 Item 14 Item 12 Item 20 Item 14 Item 12 Item

1 40.89 30.83 26.62 38.20 27.89 24.64
Winter 2 41.33 31.61 27.61 36.98 27.60 23.98

combined 41.11 37.59
1 38.00 29.35 26.13 33.95 25.84 22.56

Summer 2 37.49 29.09 25.67 33.29 24.79 21.62
combined 37.74 33.62

Table 10

Results of Three-Way ANOVA on 20 Item Mean Total Test

Informations Using Semester and Test as Independent

Variables with Repeated Measures over Sessions

Source SS df MS F

Test 494.71 1 494.71 6.63 0.012
Semester 455.64 1 455.64 6.11 0.016
Test x Semester 3.14 1 3.14 0.04 0.838
Error 4997.47 67 74.59
Session 8.04 1 8.04 2.22 0.141
Session x Test 6.90 1 6.90 1.90 0.172
Session x Semester 0.33 1 0.33 0.09 0.764
Session x Test x Semester 4.77 1 4.77 1.32 0.255
Error 243.05 67 3.63
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Table 9 shows that the mean total test informations from the Bayesian
tests were higher than the mean total test informations from the maximum
likelihood tests at all test lengths. The ANOVA summarized in Table 10
indicates that this difference is significant, since an F-6.63 (p<.05)
was obtained for the test main effect. This result may Tndicate that the
mean Bayesian ability estimate was less than the mean maximum likelihood
ability estimate since, as was previously pointed out, the information
per item was lower for items farther away from the center of the item
pool. In order to further compare the total test information yielded by
the two procedures, the total test information for the two procedures
were plotted on the same set of axes. These plots are shown in Figure 11.

FIGURE 11
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As can be seen in Figure 11, the test information functions for the
Bayesian and maximum likelihood procedures werefor all practical pur-
poses the same. The Bayesian curve is shifted toward the lower end of
the ability scale relative to the maximum likelihood curve, however,
indicating that the Bayesian ability estimates fall in a slightly lower
region of the scale. This result will be amplified in the next section.

Ability Estimates

A summary of the descriptive statistics for the ability estimate
distributions for the Bayesian tailored tests at the 12, 14, and 20 item
test lengths for both sessions of the winter semester study is shown in
Table 11. Table 12 contains the same data for the summer study. The
summary statistics for the maximum likelihood tailored test ability
estimate distributions at the 12, 14, and 20 item test lengths for the
winter and summer semesters are shown in Table 13 and 14, respectively.
Plots of the 20 item ability estimate distributions were shown earlier
in Figures 3 through 6. An ANOVA previously discussed in conjunction
with these figures indicated that the summer semester ability estimates
were significantly higher than the winter semester ability estimates.
A comparison of the means presented in Tables 11 through 14 also indicates
that the maximum likelihood ability estimates were higher than the
Bayesian ability estimates. In order to confirm this fact, a four-way
ANOVA was run on the ability estimates using semester, test, session and
test length as independent variables, with repeated measures over sessions
and test lengths. Recall that the plot of total test information indi-
cated that there might be a significant difference in the two sets of
ability estimates.

Table 11

Descriptive Statistics for the Bayesian

Ability Estimate Distributions for the Whlter Semester

Session I Session 2

Statistic
20 Item 14 Item 12 Item 20 Item 14 Item 12 Item

N 16 16 16 16 16 16
Mean .746 .650 .643 .859 .800 .833
St. Dev. .452 .455 .503 .419 .401 .394
Skewness .969 .942 .616 1.021 x.084 1.004
Kurtosis .416 .916 -.147 -.135 .293 .030
Minimum .181 .003 -.141 .497 .391 .388
Maximum 1.818 1.764 1.723 1.775 1.740 1.693

-

V!
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Table 12

Descriptive Statistics for the Bayesian

Ability Estimate Distributions for the Summer Semester

Session 1 Session 2

Statistic
20 Item 14 Item 12 Item 20 Item 14 Item 12 Item

N 13 13 13 13 13 13
Mean 1.183 1.115 1.070 1.178 1.178 1.156
St. Dev. .554 .507 .477 .584 .584 .597
Skewness .037 .230 .466 .425 .425 .109
Kurtosis -.933 -.643 -.272 -.216 -.216 -.263
Minimum .387 .316 .330 .191 .191 .071
Maximum 2.049 1.967 1.960 2.256 2.256 2.183

I

Table 13
Descriptive Statistics for the Maximum Likelihood

Ability Estimate Distributions for the Winter Semester

Session 1 Session 2
Statistic

20 Item 14 Item 12 Item 20 Item 14 Item 12 Item

N 18 18 18 18 18 18
Mean 1.255 1.280 1.314 1.296 1.312 1.336
St. Dev. .332 .427 .408 .378 .435 .470
Skewness -.184 -.227 .037 -.029 .003 .243
Kurtosis -.349 -.969 -1.190 -1.035 -1.191 -.940
Minimum .649 .539 .699 .750 .626 .571
Maximum 1.913 1.849 2.011 1.954 2.052 2.112

I tI IIII I_ __IN_ _
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Table 14

Descriptive Statistics for the Maximum Likelihood

Ability Estimate Distributions for the Summer Semester

Session 1 Session 2

Statistic
20 Item 14 Item 12 Item 20 Item 14 Item 12 Item

N 23 23 23 23 23 23
Mean 1.535 1.517 1.545 1.563 1.698 1.701
St. Dev. .511 .554 .525 .580 .952 .789
Skewness -.149 -.103 -.166 .283 3.054 2.610
Kurtosis .343 .070 -4.260 -.075 12.050 9.398
Minimum .457 .483 .665 .532 .576 .727
Maximum 2.634 2.592 2.537 2.887 5.500 4.700

The results of the four-way ANOVA on ability estimates are summarized
in Table 15. As can be seen in Table 15, the test main effect was signi-
ficant (F=15.43, p<.01), indicating that the maximum likelihood ability
estimates were significantly higher than the Bayesian ability estimates.
Thus, the hypothesis formulated on the basis of the information analyses
was confirmed. The significance of the semester main effect (F=8.33,
<.01) is further evidence supporting the conclusion that the summer study
ality estimates were significantly higher than the winter study ability

estimates. This was true for both procedures, as indicated by the non-
significance of the semester x test interaction.

The significance of the session main effect (F-7.50, p<.01) indicates
that the second session ability estimates were sigiificantly higher than
the first session ability estimates. The lack of significance of the in-
teraction of session with test indicates that the second session ability
estimates were significantly higher than the first session ability esti-
mates for both procedures.
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Table 15

Results of Four-Way ANOVA on Ability Estimates

Using Semester, Test, Session, and Test Length as Indepo nt Variables

with Repeated Measures over Sessions and Test Lergth

Source SS df MS F a
Semester 12.69 1 12.69 8.33 .005
Test 23.49 1 23.49 15.43 .000
Semester x Test .27 1 .27 .18 .675
Error 100.50 66 1.52
Session 1.01 1 1.01 7.50 .008
Session x Semester .00 1 .00 .00 .992
Session x Test .02 1 .02 .15 .699
Session x Semester x Test .13 1 .13 .97 .328
Error 8.92 66 .14
Length .04 2 .02 .61 .546
Length x Semester .01 2 .00 .11 .895
Length x Test .37 2 .19 6.39 .002
Length x Semester x Test .04 2 .02 .72 .488
Error 3.83 132 .03
Session x Length .06 2 .03 1.63 .199
Session x Length x Semester .01 2 .01 .32 .728
Session x Length x Test .02 2 .01 .46 .630

Session x Length x Semester x Test .06 2 .03 1.43 .242
Error 2.54 132 .02

The test length main effect was not significant. However, the inter-
action of test type with test length was significant (F=6.39, p<.

0 1). In
order to explore this effect Fisher's LSD test was appTied to the mean
ability estimates at the different test lengths. When the LSD test was
applied to the maximum likelihood mean ability estimates no significant
differences were found. For the winter semester Bayesian mean ability
estimates, a value of LSD=.073 at a=.05 was obtained. Comparisons of
this value with the differences in means indicated that the 12 item,
and 20 item mean ability estimates were significantly different, while
the other pairings, 12 item with 14 item and 14 item with 20 item, were
not significantly different.

The results of these LSD tests are consistent with previously reported
results. The mean ability of the winter group was closer to the mean of

the assumed prior distribution than was the mean ability of the summer
group. As a result, the effect of the low prior may have been overcome

... . _____________|___.... .. .. -______________________
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by the 12 item level for the winter semester. The 12 item and 14 item
mean ability estimates were not significantly different, nor were the
12 item and 20 item mean ability estimates. This finding is an anomaly
for which no explanation could be found. Reckase (1974) found that con-
tinuation of a tailored test beyond the optimal test length introduces
bias into the ability estimates. From the convergence plots it appears
that this was the case here. For the summer semester the significance
of the difference between the 12 item and 20 item mean ability estimates
perhaps irVicates that the effect of the prior distribution was not over-
come by 12 items, but rather that the ability estimates continued to
increase beyond the twelfth item. The lack of significance of the dif-
ference between the 12 item and 14 item mean ability estimates may just
be an indication that the increase in ability estimates was too gradual
for two items to make a significant difference. This explanation is, of
course, only one possibility. Other reasonable explanations may be found.

The final set of analyses run on the ability estimates-involved an
investigation of the interaction of the ability estimation procedures and
item selection procedures. Because the two tailored testing techniques
utilized different item selection procedures, any differences in the
ability estimates obtained from the techniques could have been due to dif-
ferences in the ability estimation procedures, differences in the item
selection procedures, or both. In order to determine the source of the
differences in ability estimates, maximum likelihood ability estimates
were obtained using the items selected by the Bayesian tailored testing
procedure, and the Bayesian ability estimates were obtained using the
items selected by the maximum likelihood tailored testing procedure.
These new ability estimates were analyzed with a three-way ANOVA using
ability estimation procedure, item selection procedure, and session as
independent variables, with repeated measures over sessions. The results
of this analysis are reported in Table 16 and the. mean ability estimates
obtained are reported in Table 17.

Table 16

Three-Way ANOVA on Recalculated Ability Estimates

Using Item Selection Procedure, Estimation Procedure, and

Session as Independent Variables, with Repeated

Measures over Sessions

Source SS df MS F

Selection 10.20 1 10.20 11.85 .001
Error 59.40 69 .86
Session .80 1 .80 7.24 .009
Session x Selection .01 1 .01 .10 .758
Error 7.57 69 .11
Estimation .17 1 .17 29.10 .000
Estimation x Selection .03 1 .03 4.51 .037
Error .41 69 .01
Session x Estimation .01 1 .01 5.46 .022
Session x Estimation x Selection .01 1 .01 5.08 .027
Error .13 69 .00

. . . . ."*
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Table 17

Means and Standard Deviations Associated with the

Three-Way ANOVA on Recalculated Ability Estimates

Item Ability Estimation Procedure
Selection Statistic Bayesian Maximum Likelihood
Procedure Session 1 Session 2 Session 1 Session 2

Mean .954 1.048 .984 1.079
Bayesian

Std. Dev. .533 .516 .579 .563

Mean 1.317 1.413 1.363 1.507
Max. Like.

Std. Dev. .409 .433 .456 .504

As can be seen in these tables, regardless of which procedure selected
the items, the maximum likelihood ability estimates were significantly
greater than the Bayesian ability estimates (F=29.10, p<.01. It is clear
from these results that at least part of the differences found between
the Bayesian and maximum likelihood tailored test ability estimate dis-
tributions was due to differences in the ability estimation procedures.
However, it should also be noted from Table 16 and 17 that for both pro-
cedures the ability estimates were higher when based on the maximum like-
lihood items than when based on the Bayesian items (F=11.85, p<.01). It
is also clear, then, that part of the differences found between the ability
estimates obtained from the two tailored test procedures was due to the
difference in items selected for administration. One possible explana-
tion for these differences is that the assumption of a prior distribu-
tion of ability made by the Bayesian procedure imposed a restriction on
the range of ability estimates obtained from that procedure, which in turn
would restrict the range of the b-values of the items selected. The
restriction of the range of b-vaTues would have further limited the range
of ability estimates. Thus, there may have been an interaction of
item selection and ability estimation procedures that, due to an inap-
priately low prior, limited the magnitude of the resulting ability esti-
mates. This is supported by the finding that the estim$in orocedure
x item selection procedure interaction was significant 4 .51, p .05).

The session main effect reported in Table 16 was also significant
(.-7.24, p4.01), as was the session x estimation procedure interaction
(F-5.46, p<.05). The significante of the session main effect was con-
sJstent wTth prevtously reported findings. The significance of the
session x estimation procedure interaction was probably due to the res-
triction in the range of the Bayesian ability estimates. The three-way
interactton among session, estimation procedure, and item selection
procedure (F=5.08, p<.05) is difficult to interpret.

In order to further investigate the effect of the prior distribution
on the obtained Bayesian ability estimates an additional analysis was
performed. This analysis involved obtaining Bayesian ability estimates
using both sets of tailored test items, but using a prior with a mean
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of 2.0, as opposed to the mean of -.100 or .150 originally employed.
These new ability estimates were also analyzed using a three-way ANOVA', but
this time with prior distribution in place of ability estimation pro-
cedure as the third independent variable. The results of this analysis
are reported in Table 18 and the obtained means are reported in Table
19. As can be seen in Tables 18 and 19 the new Bayesian ability esti-
mates were significantly higher using the high prior than when using the
low prior for both item selection procedures. The prior distribution
main effect had an F=91.84, p<.01 , while the prior x selection inter-
action was not signTficant. As.can be seen from the means reported in
Table 19, use of the high prior increased the Bayesian ability estimates
using the Bayesian tailored test items, but not to the level of the
Bayesian ability estimates using the maximum likelihood tailored test
items. This is supported by the significance of the selection main
effect (F=10.04, <.01). It should be remembered that for the Bayesian
tests using the high prior the items were still those selected when
the low prior was being used. As a result, all of the items were too
easy for the ability estimates obtained using a high prior. Thus, when
an item was correctly answered the ability estimate would have increased
only minimally. When an item was answered incorrectly, on the other
hand, the low b-values would have resulted in a large decrease in the
ability estimare. That is, the b-values pulled the ability estimates
down close to that level for which the items had been selected. The
effect of the high prior, then, was to increase the ability estimates
only a small, though statistically significant, amount.

Table 18

Three-Way ANOVA on Recalculated Bayesian Ability Estimates Using

Item Selection Procedure, Prior Distribution, and Session as,

Independent Variables, with Repeated Measures over Sessions

Source SS df MS F R

Selection 9.34 1 9.34 10.04 .002
Error 64.22 69 .93
Session .15 1 .15 3.78 .056
Session x Selection .13 1 .13 3.18 .079
Error 2.71 69 .04
Prior .38 1 .35 91.84 .000
Prior x Selection .00 1 .00 .43 .513
Error .28 69 .00
Session x Prior .00 1 .00 .49 .484
Session x Prior x Selection .00 1 .00 .03 .858
Error .48 69 .01
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Table 19

Means and Standard Deviations Associated with the Three-

Way ANOVA on Recalculated Bayesian Ability Estimates

Item Prior Distribution

Selection Statistic Low High
Procedure Session 1 Session 2 Session 1 Session 2

Mean .954 1.037 1.017 1.111
Bayesian Std. Dev. .533 .521 .546 .582

Mean 1.360 1.355 1.430 1.443

Max. Like. Std. Dev. .408 .469 .454 .485

This result serves to point out the serious effect of an inappropri-
ate prior. Selecting a prior and selecting items on the basis of that
prior forces item b-values to remain in the region of the prior mean.
Because only items-with b-values in that region are administered, sub-
sequent ability estimates are also forced to remain in the region of the
prior mean. The results of the ANOVA and LSD tests on the ability esti-
mates indicate than an inappropriate prior may eventually be overcome,
but it may significantly increase the length of the tailored test that
is required. Moreover, the different results of the LSD test for the
two semesters point out that the appropriateness of the prior must be
determined for every distinct group of examinees.

It may be true that the Bayesian ability estimates obtained using
the high prior were still smaller than the maximum likelihood ability
estimates because the estimates were obtained using items with inap-
propriately low b-values. If so, the fact that the Bayesian ability
estiniates obtained using the maximum likelihood items were higher than
when the Bayesian items were used would indicate that the maximum like-

lihood procedure administered items with higher b-values than did the
Bayesian procedure. A comparison of the mean b-Value for the items ad-
ministered by the Bayesian procedure (.678) with the maximum lie lihood
mean b-value (.903) yielded a t=11.45, p<.001. Clearly, then, the maxi-
mum ITkelihood procedure adminTstered items with greater b-values than
did the Bayesian procedure. This result supports the hypotheses set
out above.

Items Administered

As was discussed in the previous section, the maximum likelihood
procedure tended to administer items with higher b-values than did the
Bayesian procedure. Further comparisons indicateT that the mean a-value
of the items administered by the maximum likelihood procedure (1.T66)
was significantly greater than the Bayesian mean a-value (1.749), yield-
ing a t=2.183, p<.05. The mean c-values were not-significantly different.
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It was also found that there were operational differences in the
two item selection procedures. It was found that the b-value of an item
selected by the Bayesian tailored test procedure was mire closely related
to the current ability estimate than was the b-value of an item selected
by the maximum likelihood procedure. The correlation of the item b-values
with the ability estimates used to select the items was r,.77 for The
Bayesian procedure, ra.61 for the maximum likelihood procedure. A com-
parison of these cor-elations using Fisher's r to z transformation re-
sulted in a z=3.31, p<.01. There were no siginificant differences in
the correlatTons of the a-values and c-values with the ability estimates.

In order to determine whether the difference in entry point into
the item pool between sessions affected one procedure more than another,
an analysis was performed to discover whether one procedure had more items
in common between sessions than the other procedure. This analysis was
also used to compare the similarity of items over sessions of the two
procedures.

For the Bayesian tailored tests the proportion of items administered
in the first session that were repeated in the second session was 0 .827.
For the maximum likelihood procedure the proportion of repeated items
was p=.848. A comparison of these two proportions to determine whether
the difference was significant yielded a z=1.07, which was not signifi-
cant. It is seen from this result that te two procedures were equally
consistent in the items that were administered across sessions. Also,
both procedures tended to use only about a third of the items in the item pool.

Goodness of Fit

From the analyses reported previously the conclusion was reached
that the Bayesian procedure was producing ability estimates that were
perhaps too low. If that were true then the probability of a orrect re-
sponse to a given item computed from the 3PL model using those ability
estimates would also be too low. This would be reflected in poorer fit
of the model to the data when using the Bayesian procedure, which should
have been detected by the comparison of the MSD statistic ubtained for
the two procedures. This was the case. The MSD statistic obtained for
the maximum likelihood procedure was MSD=.244, and the value obtained for
the Bayesian procedure was MSDu.266. A comparison of these two values
yielded a t=5.64, p<.01, indicating that the Bayesian procedure yielded
significantly poorer fit than the maximum likelihood procedure.

Descriptive Statistics

The first descriptive statistic compiled for the procedures was
the average test difficulty measured as the proportion of items answered
correctly. To analyze these proportion correct values a three-way ANOVA
was run using semester, test, and session as independent variables, with
repeated measures over sessions. In order to meet the assumption of nor-
mality made by the ANOVA, the proportion correct values were first trans-
formed using the arc sine transformation. The results of this ANOVA
are summarized in Table 20. As can be seen in the table, both the semes-
ter and test main effects were significant (F=6.55, p<.05 for semester;
F-5.53, p<.05 for test). The means and standard devTations for this
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ANOVA are reported in Table 21. An examination of Table 21 shows that
the summer tests were easier for the examinees than were the winter tests.
The nonsignificance of the semester x test interaction indicates that
this was true for both procedures. The session main effect was not sig-
nificant, indicating that neither session was easier than the other for
either procedure or semester. However, these tables do indicate that
the maximum likelihood tests were easier for the examinees than were the
Bayesian tests. This finding appears to be contrary to the expected re-
sult. If the Bayesian procedure were administering items with inappro-
priately low b-values, as was previously hypothesized, the Bayesian tests
would have bein easier for the examinees than were the maximum likeli-
hood tests. The finding that the maximum likelihood tests were easier
indicates that at least some part of the difference in ability estimates
obtained from the two procedures was due to actual differences in vocab-
ulary ability. However, the ability estimate analysis investigating the
effect of the prior on subsequent ability estimation and item selection
clearly demonstrates that not all of the differences in ability esti-
mates were due to differences in group ability.

An analysis of the test difficulty separately for each semester is
revealing. It was hypothesized previously that the Bayesian procedure
actually overcame the inappropriate prior for the winter semester
examinees, and that the ability estimates leveled off somewhat at a level
substantially below the level of the maximum likelihood ability estimates.
This indicates an actual difference in ability. This is supported by
a comparison of the mean test difficulties for the two procedures for
the winter semester, which yields a t=2.47, .< .05. For the summer
semester it was suggested that the ifappropriate prior may not have
been overcome. The summer Bayesian ability estimates were significantly
lower than the maximum likelihood ability estimates, but were increasing
with increased test length. Had the Bayesian tailored tests been suf-
ficiently long to overcome the effect of the prior it is possible that
the Bayesian abllity estimates would have approached the level of the
maximum likelihood ability estimates. It is likely, then, that there
was considerably less difference between the group vocabulary abilities
for the summer semester than for the winter semester. This is supported
by the finding that the difference in mean proportion correct values for
the two procedures was not significant for the summer semester. Had
the examinees taking the Bayesian tests been of the same ability as the
maximum likelihood examinees, the Bayesian tailored tests would have been
easier than the maximum likelihood tests.

--- i



-39-

Table 20

Three-Way ANOVA on Test Difficulties Using Semester,

Test, and Session as Independent Variables, with

Repeated Measures over Sessions

Source SS df MS F R

Semester 440.14 1 440.14 7.10 .001
Test 300.08 1 300.08 4.84 .031
Semester x Test 35.72 1 35.72 .58 .450
Error 4089.04 66 61.96
Session 3.80 1 3.80 .66 .419
Session x Semester 3.57 1 3.57 .62 .433
Session x Test 2.21 1 2.21 .39 .537
Session x Semester x Test 5.31 1 5.31 .93 .339

Error 378.29 66 5.73

Table 21

Means and Standard Deviations of Test Difficulties for

Both Sessions of the Bayesian and Maximum

Likelihood Tailored Tests for Both Semesters

Semester Statistic Bayesian Maximum Likelihood

Session 1 Session 2 Session I Session 2

Winter Mean .69(56.24) .70(56.76) .75(60.93) .76 (60.93)
Std. Dev. .09( 5.59) .07( 4.67) .05( 3.60) .07 (4.35)

Sumer Mean .75(60.83) .77(61.49) .79(63.44) .78(62.79)
Std. Dev. .10( 7.46) .09( 6.55) .08( 6.11) .10( 7.15)

Note: Values in parentheses represent the results of the arc sine trans-
formations.
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Another statistic compiled for the two procedures was the mean
testing time for the 20 item test, measured in seconds. The means and
standard deviations for both sessions of the two procedures for both
semesters are shown in Table 22. Table 23 summarizes the results of a
three-way ANOVA on the testing times using semester, test, and session
as independent variables, with repeated measures over sessions. As
can be seen in these tables, the tailored tests in the summer study
took significantly longer than did the winter semester tailored tests
(F=11.71, p<.01). This was true for both procedures, since the semester
x test interaction was not significant. The test main effect was not
significant, indicating that there were no significant differences in
the amount of time the two types of tailored tests lasted. The session
main effect was significant (E=5.96, p<.05), with the second session
tests ending more quickly than the first session tests in all cases
except the summer maximum likelihood condition. The session x semester
interaction was significant (F=5.97, p<.05), with the difference between
the two sessions being larger-for the winter semester.

Table 22

Means and Standard Deviations of Testing Time in Seconds for

Both Sessions of the Bayesian and Maximum

Likelihood Tailored Tests for Both Semesters

Semester Statistic Bayesian Maximum Likelihood

Session 1 Session 2 Session 1 Session 2

Winter Mean 607.88 498.12 566.72 480.78
Std. Dev. 176.02 102.69 94.02 106.13

Summer Mean 715.92 707.62 601.39 609.78
Std. Dev. 256.59 222.57 154.37 181.94

Table 23

Three-Way ANOVA on Testing Time Using Semester,

Test, and.Session as Independent Variables, with

Repeated Measures over Sessions

Source SS df MS F P.

Semester 483310.04 1 483310.04 11.71 .001
Test 152578.77 1 152578.77 3.70 .059
Semester x Test 50360.16 1 50360.16 1.22 .273
Error 2723098.41 66 41259.07
Session 79322.81 1 79322.81 5.96 .017
Session x Semester 79459.27 1 79459.27 5.97 .017
Session x Test 3631.40 1 3631.40 .27 .603
Session x Semester x Test 141.60 1 141.60 .01 .918
Error 878721.87 66 13313.97

5,
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Latency

The correlations obtained between the mean item response latencies
for a person and their ability estimates for both sessions of both semes-
ters are shown in Table 24. As can be seen in the table, none of the
correlations were significant for the winter semester. For the summer
semester the correlations were significant for the first session Bayesian
tests (r=-.57, p<.05 )nd for both sessions of the maximum likelihood
tests (F=.51, p<.05 for the first session; r=-.47, p<.05 for the second
sessionT.

Table 24

Correlations of Ability Estimates and Mean Latencies for

Both Sessions of the Bayesian and Maximum Likelihood

Tailored Tests for the Winter and Summer Semesters

Bayesian Maximum Likelihood
Semester

Session 1 Session 2 Session 1 Session 2

Winter -.17 -.02 .06 -.18

Summer -.57* -.04 -.51" .47*

*P<.05.

The final analysis performed was the comparison of mean latencies for
correct and incorrect responses. The results of a four-way ANOVA on the
mean latencies are summarized in Table 25. The means and standard devia-
tions for this analysis appear in Table 26. For this analysis the indepen-
dent variables were semester, test, session, and response (correct or in-
correct). Session and response were repeated measures. As can be seen
in Table 25 the session and response main effects were significant. The
semester and test main effects were not significant, nor were any of the
interactions. From Table 26 it can be seen that the first session response
latencies were greater than the second session response latencies. Also,
response latencies for the incorrect responses were greater than the laten-
ctes for correct responses. No differences were found between the two test
procedures.
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Table 25

Results of Four-Way ANOVA on Mean Response Latencies

Using Semester, Test, Session, and Response as

Independent Variables with Repeated Measures

over Session and Response

Source SS df MS F P

Semester 527.87 1 527.87 3.35 .072
Test 315.29 1 315.29 2.00 .162
Semester x Test 75.61 1 75.61 .46 .474
Error 10570.06 67 157.76
Session 2000.51 1 2000.51 52.42 .000
Session x Semester 4.42 1 4.42 .12 .735
Session x Test 42.52 1 42.52 1.11 .295
Session x Semester x Test 17.61 1 17.61 .46 .499
Error 2556.81 67 38.16
Response 2794.22 1 2794.22 60.72 .000
Response x Semester 45.40 1 45.40 .99 .324
Response x Test 12.99 .1 12.99 .28 .597
Response x Semester x Test 3.26 1 3.26 .07 .791
Error 3083.28 67 46.02
Session x Response 93.99 1 93.99 3.54 .064
Session x Response x Semester 4.34 1 4.34 .16 .687
Session x Response x Test 3.83 1 3.83 .14 .705
Session x Response x Semester x Test 3.15 1 3.15 .12 .732
Error 1777.85 67 26.54

Table 26

Means and Standard Deviations of Response Latencies for Correct and
Incorrect Responses for Both Sessions of the Bayesian and Maximum

Likelihood Tailored Tests for Both Semesters

Semester Response Statistic Bayesian Maximum Likelihood

Session 1 Session 2 Session 1 Session 2

Winter Correct Mean 13.86 8.86 11.80 8.27
Std. Dev. 7.32 4.65 4.15 3.71

Incorrect Mean 20.23 13.27 19.51 12.22
Std. Dev. 11.79 6.10 11.02 5.75

Sumer Correct Mean 17.40 11.82 12.20 9.27
Std. Dev. 6.36 4.32 4.99 5.92

Incorrect Mean 24.89 17.50 21.05 16.23
Std. Dev. 13.45 8.28 12.72 9.91

- - - - - - - - - - -
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Discussion

In order to put this study in the proper perspective, it is necessary to
view it as one of a series of studies designed to evaluate alternative compo-
nents for tailored testing. The series began with several studies
designed to determine which of the available latent trait models was optimal
(Koch and Reckase, 1978, 1979; McKinley and Reckase, 1980a; Reckase, 1977).
Once a model was selected (the 3PL model),a study was done to identify the
optimal item calibration procedure to be used with the model (McKinley and
Reckase, 1980b). After an item calibration procedure was selected for the
model (LOGIST),a set of studies was begun to determine what the optimal
operating characteristics of the tailored testing procedure should be.
These characteristics included item selection and ability estimation proce-
dures, which are the topics of the current study.

Optimal Cutoffs

The convergence plot analyses performed indicated that the optimal test
length for the Bayesian procedure was 14 items. This result was consistent
across sessions and semesters. For the maximum likelihood procedure the op-
timal test length was 12 items. If cutoffs are expressed in terms of item
information and standard error of estimate, the optimal cutoff value for
the Bayesian procedure was a standard error of estimate of .25, and for the
maximum likelihood procedure the optimal cutoff value was an item informa-
tion of 1.64. A comparison of the optimal test lengths for the two proce-
dures indicates that the Bayesian procedure requires more items to obtain
stable ability estimates. This conclusion is supported by the finding that
the test length main effect was not significant for the maximum likelihood
ability estimates but was significant for the Bayesian ability estimates.
This finding was also consistent across semesters.

Reliabilities

In terms of reliability, no significant differences were found between
the two procedures. Moreover, for neither procedure was there any signi-
ficant differences in reliability across the different test lengths. The
results were the same when reliabilities were computed using estimated true
scores. It should be pointed out here that the relative instability of the
Bayesian ability estimates did not lower the reliability of the Bayesian
tailored tests at the shorter test lengths. As was stated earlier, thesereliabilities were obtained with relatively small sample sizes, so largedifferences were necessary for significance.

Total Test Information

At the 20 item level the mean total test information yi lded by the
Bayesian procedure was significantly greater than the mean total test in-
formation yielded by the maximum likelihood procedure. It is apparent from
these findings that the Bayesian procedure was yielding ability estimates in
a range where more items with high information at those ability estimates
were available. Since the mean of the assumed prior distribution of ability
was in that region of the ability scale for which the item pool would yield
the greatest information, this result indicates that the ability estimates
yielded by the Bayesian procedure tended to be relatively close to the mean
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of the prior distribution. In that region of the ability scale where
both procedures yielded ability estimates the Bayesian procedure did not
appear to yield more total test information. It should be pointed out
that the prior of the Bayesian procedure held ability estimates in that
range where there was high information because the mean of the prior was
selected as an ability near the mode of the total information curve of
tne pool. Had the prior been set higher the mean total test information
for the Bayesian procedure would have decreased. Thus, the high infor-
mation of the Bayesian procedure was due to the selection of the prior
and the structure of the item pool.

Ability Estimates

The four-way ANOVA on the ability estimates confirmed the hypothesis
that the maximum likelihood ability estimates were significantly greater
than the Bayesian ability estimates. On the basis of this finding the
hypothesis was formulated that the Bayesian ability estimates were smaller
because the mean of the assumed prior distribution was too low. That is,
the effect of the prior distribution was to lower the ability estimates
obtained from the Bayesian procedure. If these hypotheses were true, then
the Bayesian ability estimates should have increased as test length in-
creased, since additional items would give the procedure opportunity to
overcome the effect of the inappropriate prior. The increase should have
continued until- the prior was overcame, and then the ability estimates
should have begun to stabilize. Evidence supporting this prediction was
obtained from the test length analyses. The maximum likelihood ability
estimates did not change significantly after 12 items, while for the
Bayesian ability estimates the test length effect was significant. For
the summer semester the Bayesian mean ability estimates continued to in-
crease across the different test lengths. This is an indication that the
mean ability of the summer examinees was sufficiently higher than the mean
of the assumed prior distribution of ability that the retarding effect
of the prior was never completely overcome, even after 20 items. The mean
ability of the winter semester examinees was lower than the mean ability
of the summer group, and as a result the prior was more appropriate, yielding
stable estimates by the twelfth item. From these results it appears that
use of an inappropriate prior distribution of ability may have a serious
effect on the ability estimates obtained from the Bayesian procedure, thus
affecting the length of test required to obtain accurate estimates.

The investigation into the interaction of the ability estimation pro-
cedures and the item selection procedures yielded further evidence as to
the restricting effect of the assumed prior distribution. The Bayesian
ability estimation procedure consistently yielded ability estimates that
were lower (closer to the mean of the assumed prior distribution) than
the maximum likelihood ability estimates, even when ability estimates were
obtained from the two procedures using the same set of items. When ability
estimates were obtained from the Bayesian procedure on the maximum likeli-
hood items using a higher prior mean, the ability estimates increased to
the same level as the maximum likelihood ability estimates. However,
using a higher prior did not significantly increase the Bayesian ability
estimates on the Bayesian Items. Because the maximum likelihood items had
significantly higher b-values, it was hypothesized that raising the prior
would affect ability istimates only if items were selected on the basis
of the new prior (i.e., with higher b-values). These results indicate that,
had a higher prior distribution of ability been assumed for the summer
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Bayesian tailored tests, the procedure would have administered items
with greater b-values and would have yielded ability estimates close to
the magnitude-of the maximum likelihood ability estimates. For the
winter semester, due to the actual differences in ability between the
two groups, a higher prior probably would have significantly increased
the Bayesian ability estimates, but not to the level of the maximum like-
lihood ability estimates.

The results of the ability estimate analyses lead to two general con-
clusions. The first conclusion is that use of an inappropriate prior dis-
tribution of ability in the estimation of ability may significantly in-
crease the test length required to obtain accurate ability estimates. The
greater the degree of inappropriateness of the assumed prior, the longer
the tailored test will have to be to obtain good ability estimates. The
second conclusion is that the commonly assumed prior distribution of ability
will not be appropriate for a heterogeneous group. The same prior was used
for the winter and summer examinees, two groups clearly different in ability.
For the winter semester the effect of the inappropriate prior was not
as pronounced as it was for the summer session.

These conclusions have special significance for criterion referenced
type testing, where some absolute level of performance is sought. An in-
appropriate prior could prevent an examinee's ability estimate from reaching
the criterion, or could artificially elevate the ability estimates to a
level above the criterion. Making valid decisions in such situations would
be quite difficult.

Items Administered

Analysis of the items administered by the two procedures indicated
that the maximum likelihood procedure administered items with higher b-
values than the Bayesian procedure. There appeared to be two reasons-for
this. First, the Bayesian ability estimates were lower than the maximum
likelihood ability estimates, and therefore the administration of items
appropriate for the current ability estimate resulted in the selection of
easier items. Second, the item selection procedure used by the Bayesian
tailored test procedure selected items with b-values more highly correlated
with the ability estimates than did the item-selection procedure employed
by the maximum likelihood tailored test procedure. The result of this was
to strengthen the effect of the lower ability estimates yielded by the
bayesian procedure. The effect of the inappropriate prior might have been
less had the Bayesian procedure selected items on the basis of information.

Further comparisons indicated that the maximum likelihood proce-
dure administered items with higher a-values than the Bayesian procedure.
This was probably due to the fact that selection using the information
function more heavily weighted the a-value4 in the selection of items
than did the Bayesian procedure. No differences were found in the c-
values of the items administered by the two procedures.

Mon I
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Goodness of Fit

The results of the ability estimate analyses indicated that the
Bayesian procedure may have underestimated ability. As a result, an
examinee would have had a higher probability of correctly responding
to items than would have been predicted by the model on the basis of
their Bayesian ability estimate. This would result in poorer fit of
tne 3PL model to the data when using Bayesian ability estimates than
when using the maximum likelihood ability estimates. This was found
to be the case. The MSD value obtained for the Bayesian procedure was
significantly greater than the MSD value obtained for the maximum
likelihood procedure.

Oescriptive Statistics

The results of the analyses of the mean proportion correct for each
test at first appeared inconsistent with the results of other analyses.
The maximum likelihood tailored tests were found to be significantly
less difficult than the Bayesian tailored tests. Since the maximum
likelihood procedure administered items with greater b-values, it was
expected that the maximum likelihood tests would be found to be more
difficult than the Bayesian tests. Further analyses apparently resolved
this conflict. Since the winter Bayesian ability estimates stabilized
at a lower level than the maximum likelihood ability estimates, it was
hypothesized that the examinees taking the Bayesian tests were of lower
vocabulary ability than the examinees taking the maximum likelihood tests.
This would explain why the examinees taking the Bayesian tests received
easier items than the examinees taking the maximum likelihood tests
but missed more items. For the summer-semester the Bayesian ability
estiwates did not stabilize, indicating that the examinees taking the
Bayesian tests were of vocabulary ability closer to the ability of the
examinees taking the maximum likelihood tests than was the case with
the winter group. In support of this interpretation was the finding that
for the summer semester the mean proportion correct for the two proce-
dures were not significantly different.

The results of these analyses leave unclear the degree to which the
difference in ability estimates obtained from the two procedures was due
to actual differences in vocabulary ability and how much of the difference
was due to differences in the ability estimation and item selection pro-
cedures. However, on the basis of the recalculated ability estimates
discussed in conjunction with the ability estimate analyses, it would
appear that a substantial part of the difference was due to the inter-
action of the ability estimation procedure, including the prior, with
the item selection procedure.

The other statistic compiled for the two procedures was mean testing
time. An ANOVA on mean testing times indicated that there was not a sig-
nificant difference in the amount of time the two types of tailored tests
required when the number of items administered was the same.
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Latency

The correlations obtained between mean latencies and ability esti-
mates followed no meaningful pattern. For the winter semester the mean
latencies were not significantly correlated with the ability estimates.
That is, the magnitude of the ability estimates apparently had no bearing
on the mean amount of time to respond. For the summer semester the corre-
lations were significant, but there were no differences indicated between
the two procedures. The significant correlations for the summer indicated
that the brighter students took less time to respond to the items. No
hypothesis could be produced to explain why the summer and winter groups
behaved differently.

The final analysis performed was the comparison of mean latencies
for correct and incorrect responses. The ANOVA on the response latencies
indicated that response time was greater for incorrect responses than
for correct responses, but no differences between the two procedures were
indicated.

Nonconvergence

Nonconvergence was not actually a research question in this study,
but whenever maximum likelihood estimation procedures are employed it is
an important issue. Earlier studies using maximum likelihood estimation
in tailored test procedures (Koch and Reckase, 1978, 1979; McKinley and
Reckase, 1980a), found nonconvergence to be a serious problem for the 3PL
model. The incidence of nonconvergence was reduced by properly selecting
entry points into the item pool and more accurately linking the item
calibrations used in the tailored testing procedure, but nonconvergence
was not completely eliminated. An important observation concerning the
current study is that there were no cases of nonconvergence.

Summary and Conclusions

Previous studies investigating alternatives for the various Compo-
nents of tailored testing indicated that 3PL model was preferred to the
IPL model. It was also found that the LOGIST calibration program was
better than the ANCILLES procedure for calibrating the item pool. Once
these components had been selected several studies were undertaken to
determine the optimal operational characteristics of a tailored testing
procedure using these components. The present study was designed to
compare alternative aIbility estimation and item selection procedures.

This study involved a live tailored testing comparison of a tailored
testing procedure based on a Bayesian ability estimation, procedure and
a tailored testing procedure based on maximum likelihood ability estima-
tion. The Bayesian tailored testing procedure selected items so as to
minimize the posterior variance of the ability estimate distribution,
while the maximum likelihood tailored testing procedure selected items
so as to maximize the item information for the current ability estimate.
Attempts were made to first determine the optimal test length for the
two procedures, and then to compare the procedures at those test lengths,
as well as at a 20 item test length.
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Analyses indicated that the optimal test length of the maximum like-
lihood procedure was about 12 items, while the optimal length of the
Bayesian test was 14 items. Comparisons of the two procedures at these
test lengths and at the 20 item length yielded the following results.
There was no difference at any test length between the two procedures in
terms of reliability. The Bayesian procedure did yield greater mean total
test Information than did the maximum likelihood procedure. However, it
was found that the higher information of the Bayesian procedure was due
to the regression of the ability estimates to the mean of the assumed prior
distribution of ability. In the range of ability where there were ability
estimates for both procedures the difference in total test information was
negligible. Further analyses showed that the assumption of different
priors can significantly alter the ability estimates obtained from a Baye-
sian tailored test, as well as the total test information yielded by the
tailored test. It was found that the more inappropriate the prior the
longer the Bayesian tailored test had to be to obtain accurate ability
estimates. Thus, the winter semester Bayesian tests yielded stable
ability estimates by the twelfth item, on the average, while the summer
semester Bayesian ability estimates generally did not converge to a stable
value. This was consistent with the finding that the subjects in the
summer semester were of higher vocabulary ability than were the winter
semester subjects. Analyses of the item selection procedures indicated
that selection of items to minimize the posterior variance of the ability
estimates magnified the effect of the inappropriate prior. The goodness
of fit comparison indicated that the Bayesian procedure yielded signifi-
cantly poorer fit of the 3PL model to the data than did the maximum like-
lihood procedure, which was consistent with the finding that the Bayesian
ability estimates were too low.

Based on the results reported above it was concluded that selection
of an inappropriate prior significantly increased the test length required
for accurate estimation using a Bayesian tailored test. At any length
less than the optimal test length, Bayesian ability estimates are biased
in the direction of the mean of the prior distribution. If testing con-
tinues beyond the optimal test length, bias is again introduced into the
ability estimates if inappropriate items are administered. Because the
optimal test length varies depending on the appropriateness of the prior,
in order to avoid bias in the ability estimates it is essential to deter-
mine an appropriate prior. Also, it is clear from this study that the
N(0,1) prior can be appropriate for only a relatively homogeneous group.
For large heterogeneous groups determination of an appropriate prior is
much more difficult, and bias in the ability estimates can often result.
Thereforethe Bayesian tailored testing procedure seems appropriate only
when good prior information can be obtained. For large scale tailored
testing a maximum likelihood tailored testing procedure with item selection
based on information is the procedure of choice.

It _ _ _ _ _ _ _ _ _ _ _ __ _I
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